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We study the Stokes-Einstein �SE� and the Stokes-Einstein-Debye �SED� relations, Dt=kBT /6��R and Dr

=kBT /8��R3, where Dt and Dr are the translational and rotational diffusivity, respectively, T is the tempera-
ture, � the viscosity, kB the Boltzmann constant, and R the “molecular” radius. Our results are based on
molecular dynamics simulations of the extended simple point charge model of water. We find that both the SE
and SED relations break down at low temperature. To explore the relationship between these breakdowns and
dynamical heterogeneities �DHs�, we also calculate the SE and SED relations for subsets of the 7% “fastest”
and 7% “slowest” molecules. We find that the SE and SED relations break down in both subsets, and that the
breakdowns occur on all scales of mobility. Thus these breakdowns appear to be generalized phenomena, in
contrast with a view where only the most mobile molecules are the origin of the breakdown of the SE and SED
relations, embedded in an inactive background where these relations hold. At low temperature, the SE and SED
relations in both subsets of molecules are replaced with “fractional” SE and SED relations, Dt��� /T�−�t and
Dr��� /T�−�r, where �t�0.84��1� and �r�0.75��1�. We also find that there is a decoupling between rota-
tional and translational motion, and that this decoupling occurs in both the fastest and slowest subsets of
molecules. Further, we find that, the decoupling increases upon cooling, but that the probability of a molecule
being classified as both translationally and rotationally fastest also increases. To study the effect of time scale
for SE and SED breakdown and decoupling, we introduce a time-dependent version of the SE and SED
relations, and a time-dependent function that measures the extent of decoupling. Our results suggest that both
the decoupling and SE and SED breakdowns originate at a time scale corresponding to the end of the cage
regime, when diffusion starts. This is also the time scale when the DHs are more relevant. Our work also
demonstrates that selecting DHs on the basis of translational or rotational motion more strongly biases the
calculation of diffusion constants than other dynamical properties such as relaxation times.
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I. INTRODUCTION

At temperatures where liquids have a diffusion constant
similar to that of ambient temperature water, the translational
and rotational diffusion, Dt and Dr respectively, are well de-
scribed by the Stokes-Einstein �SE� relation �1�

Dt =
kBT

6��R
�1�

and the Stokes-Einstein-Debye �SED� relation �2�

Dr =
kBT

8��R3 . �2�

Here T is the temperature, � the viscosity, kB the Boltzmann
constant, and R the “molecular” radius. These equations are
derived by a combination of classical hydrodynamics �Stokes
law� and simple kinetic theory �e.g., the Einstein relation�
�3�. Recently, the limits of the SE and SED relations have
been an active field of experimental �4–9�, theoretical
�10–17�, and computational �18–30� research. The general
consensus is that the SE and SED relations hold for low-
molecular-weight liquids for T�1.5Tg, where Tg is the glass
transition temperature. For T�1.5Tg, deviations from either
one or both of the SE and SED relations are observed. Ex-
perimentally, it is found that the SE relation holds for many

liquids in their stable and weakly supercooled regimes, but
when the liquid is deeply supercooled it overestimates Dt
relative to � by as much as two or three orders of magnitude,
a phenomenon usually referred to as the “breakdown” of the
SE relation. The situation for the SED relation is more com-
plex. Some experimental studies found agreement with the
predicted values of the SED relation even for deeply super-
cooled liquids �7,31,32�, while others claim also a break-
down of the SED relation to the same extent as for the SE
relation �5,33–36�. The failure of these relations provides a
clear indication of a fundamental change in the dynamics and
relaxation of the system. Indeed, the changing dynamics of
the liquid as it approaches the glass transition is well docu-
mented, but not yet fully understood �37–40�.

There is a growing body of evidence �41–46� that, upon
cooling, a liquid does not become a glass in a spatially ho-
mogeneous fashion. Instead the system is characterized by
the appearance of dynamical heterogeneities �31,32,41–56�.
This phenomenon is often called “spatially heterogeneous
dynamics,” since there are spatial regions in which the struc-
tural relaxation time can differ by orders of magnitude from
the average over the entire system �57�. In the dynamical
heterogeneities �DHs� view, the motion of atoms or mol-
ecules is highly spatially correlated. The presence of these
DHs has been argued to give rise to the breakdown of the SE
relation �10,15�. Since the derivation of the Einstein relation
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assumes uncorrelated motion of particles, it is reasonable
that the emergence of correlations could result in a failure of
the SE relation. The aim of the present work is to assess the
validity of the SE and SED relations in the extended simple
point charge �SPC/E� model of water, and consider to what
extent the DHs contribute to the SE and SED breakdown.

Computer simulations have been particularly useful for
studying DHs �e.g., see Refs. �58–65�� since simulations
have direct access to the details of the molecular motion. For
water, the existence of regions of enhanced or reduced mo-
bility has also been identified �63,66�. In particular, Ref. �63�
identifies the clusters of molecules with greater translational
�or center of mass� mobility with the hypothesized “coopera-
tively rearranging regions” of the Adam-Gibbs approach
�67,68�. For water, those DHs are also accompanied by spa-
tial heterogeneities �69,70�.

Most computer simulation studies on DHs describe these
heterogeneities based on the particle or molecule transla-
tional degrees of freedom. We will refer to these DHs as
translational heterogeneities �THs�. For water, it is also nec-
essary to consider the rotational degrees of freedom of the
molecule. Recently, some computer simulation studies on
molecular systems described the DHs based on the molecular
rotational degrees of freedom �4,18,20,71–74�. We will refer
to these DHs as rotational heterogeneities �RHs�. For the
case of a molecular model of water, RHs were studied �74�
and it was found that RHs and THs are spatially correlated.
This work extends those results. We find support for the idea
that THs are connected to the failure of the SE relation, and
further that RHs have a similar effect on SED relation. Ad-
ditionally, we find that the breakdown of these relations is
accompanied by the decoupling of the translational and rota-
tional motion.

This work is organized as follows. In the next section we
describe the water model and simulation details. In Secs. III
and IV we test the validity of the SE and SED relations and
their connection with the presence of DH, respectively. The
decoupling between rotational and translation motion is stud-
ied in Sec. V. In Sec. VI we explore the role of time scale in
the breakdown of the SE and SED relations and decoupling
of rotational and translational motion. We summarize our
results in Sec. VII. We have placed some technical aspects of
the work in Appendices to facilitate the flow of our results.

II. MODEL AND SIMULATION METHOD

We perform molecular dynamics �MD� simulations of the
SPC/E model of water �75�. This model assumes a rigid ge-
ometry for the water molecule, with three interaction sites
corresponding to the centers of the hydrogen �H� and oxygen
�O� atoms. Each hydrogen has a charge qH=0.4238e, and the
oxygen charge is qO=−2.0qH, where e is the magnitude of
the electron charge. The OH distance is 1.0 Å and the HOH
angle is 109.47°, corresponding to the tetrahedral angle. In
addition to the Coulombic interactions, a Lennard-Jones in-
teraction is present between oxygen atoms of two different
molecules; the Lennard-Jones parameters are �=3.166 Å
and 	=0.6502 kJ/mol. We use a cutoff distance of 2.5�
=7.915 Å for the pair interactions, and the reaction field

technique �76� is used to treat the long-range Coulombic
interactions.

We perform simulations with constant particle number N,
volume V, and temperature T with N=1728 water molecules
and fixed density 
=1.0 g/cm3. The values of the simulated
temperature are T=210, 220, 230, 240, 250, 260, 270, 280,
290, 300, 310, 330, and 350 K. We use the Berendsen
method �77� to keep the temperature constant �78�. We use
periodic boundary conditions and a simulation time step of
1 fs. To ensure that simulations attain a steady-state equilib-
rium, we perform equilibration simulations for at least the
duration specified by Ref. �79�. After these equilibration runs
we continue with production runs of equal duration during
which we store the coordinates of all atoms for data analysis.
To improve the statistics of our results, we have performed
five independent simulations for each T. Reference �79� pro-
vides further details of the simulation protocol.

III. BREAKDOWN OF THE STOKES-EINSTEIN AND
STOKES-EINSTEIN-DEBYE RELATIONS

To assess the validity of the SE and SED relations we
consider a simple rearrangement of Eqs. �1� and �2�, i.e., we
define the SE ratio

RSE �
Dt�

T
�3�

and the SED ratio

RSED �
Dr�

T
. �4�

Both RSE and RSED will be temperature independent if the SE
and SED relations are valid.

To evaluate RSE and RSED, we must first calculate the
appropriate diffusion constants. Following normal procedure,
we define

Dt � lim
�t→�

1

6�t
�r2��t�	 , �5�

where �r2��t�	 is the translational mean square displacement
�MSD� of the oxygen atoms

�r2��t�	 �
1

N


i=0

N

�r�i�t�� − r�i�t��2. �6�

Here, r�i�t� and r�i�t�� are the positions of the oxygen atom of
molecule i at times t and t�, respectively, and �t= t�− t.
Analogously, we define the rotational diffusion coefficient

Dr � lim
�t→�

1

4�t
�
2��t�	 , �7�

where �
2��t�	 is the rotational mean square displacement
�RMSD� for the vector rotational displacement 
� i��t�. Spe-
cial care must be taken to calculate �
2��t�	 so that it is
unbounded. A detailed discussion of this procedure is pro-
vided in Appendix A.

We also need the viscosity � to evaluate RSE and RSED.
Unfortunately, accurate calculation of � is computationally

MAZZA et al. PHYSICAL REVIEW E 76, 031203 �2007�

031203-2



challenging. A frequently employed approximation exploits
the fact that � is proportional to the shear stress relaxation
time �s, via the infinite frequency shear modulus G�, which
is nearly T independent �80�. Additionally, we expect that �s
�a “collective property”� should be nearly proportional to
other collective relaxation times, such as the relaxation time
� defined from the coherent intermediate scattering function,
F�q ,�t�, where q is the wave vector. Therefore, we substi-
tute � by �, which should affect only the value and units of
the constants in RSE and RSED. For the purposes of our cal-
culations, we define � by fitting F�q ,�t� at long times with a
“stretched” exponential

F�q,�t� � exp�− ��t/���� , �8�

where 0���1, and we focus on the q value corresponding
to the first peak in the static structure factor S�q�.

Now that we have the necessary quantities, we show RSE
and RSED in Figs. 1�a� and 1�b� with the curves labeled “all.”
Both quantities deviate at low T from the corresponding con-
stant values reached at high temperature, indicating a break-
down of both the SE and SED relations.

Whether there is a breakdown of the SED relation in ex-
periments is not clear. While some experiments measuring

dipole relaxation times show that the SED relation holds
down to the glass transition �31,32�, other experiments �81�
show that the SED relation fails for low T. Our simulations
are in agreement with the breakdown of the SED ratio ob-
served in, e.g., Ref. �22,82�. Figures 1�a� and 1�b� also show
RSE and RSED for different subsets of molecules to examine
the role played by DH. This is discussed in the following
section.

IV. ROLE OF DYNAMICAL HETEROGENEITIES

A. Identifying mobility subsets

Some theoretical approaches �e.g., �10,15�� attempt to ex-
plain the breakdown of SE and/or SED in terms of DH. To
this end, we must first describe the procedure used to select
molecules whose motion �or lack thereof� is spatially corre-
lated. A variety of approaches have been used to probe the
phenomenon of DH. Here we use one of the most common
techniques: partitioning a system into mobility groups based
on their rotational or translational maximum displacement.

For the TH, we define the translational mobility �i of a
molecule i at a given time t0 and for an observation time �t,
as the maximum displacement over the time interval �t0 , t0

+�t� of its oxygen atom �83�
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FIG. 1. �Color online� �a� Stokes-Einstein ratio Dt� /T for the 7% most translationally mobile molecules �fastest�, for the 7% least
translationally mobile molecules �slowest�, and for the entire system �all�. There is a breakdown of the Stokes-Einstein relation �constant
Stokes-Einstein ratio� at low temperatures in both the fastest and slowest subsets, as well as for the entire system. �b� Stokes-Einstein-Debye
ratio Dr� /T for the 7% most rotationally mobile molecules, for the 7% least rotationally mobile molecules, and for the entire system �all�.
As in �a�, there is a breakdown of the Stokes-Einstein-Debye relation �constant Stokes-Einstein-Debye ratio�. �c� and �d� Normalization of
the curves in �a� and �b�, respectively, by the corresponding quantities at T=350 K. The collapse of these curves demonstrates that the
relative deviations from the Stokes-Einstein and Stokes-Einstein-Debye relations are approximately the same for the corresponding mobility
subsets.
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�i�t0,�t� � max��r�i�t + t0� − r�i�t0��, t0 � t � t0 + �t
 . �9�

For the RH, following �74�, we define a rotational mobility
that is analogous to the translational case. In analogy with
Eq. �9�, we define the rotational mobility at time t0 with an
observation time �t as

�i�t0,�t� � max��
� i�t + t0� − 
� i�t0��, t0 � t � t0 + �t
 .

�10�

We identify the subsets of rotationally and translationally
“fastest” molecules as the 7% of the molecules with largest
�i and �i, respectively. Analogously, we identify the subsets
of rotationally and translationally “slowest” molecules as the
7% of the molecules with smallest �i and �i, respectively.
The choice of 7% is made to have a direct comparison with
the analysis of Refs. �63,74�, but the qualitative details of our
work are unaffected by modest changes in this percentage. In
the following, we will refer to these subsets of molecules as
TH and RH, fastest and slowest, depending on whether we
consider the top or the bottom of the distribution of mobili-
ties. We will see that comparing the fastest and the slowest
molecules will reveal new features of DH.

B. Stokes-Einstein and Stokes-Einstein-Debye relations
for fastest and slowest molecules

Having identified subsets of highly mobile or immobile
molecules, we can calculate the ratios RSE and RSED by lim-
iting the evaluation of Dt, Dr, and � to these subsets. This is
relatively straightforward for the diffusion constants, since
they depend only on single-molecule averages. For �, the
situation is more complex since F�q ,�t� includes cross cor-
relations between molecules. Hence we specialize the defini-
tion of F�q ,�t� for the TH and RH subsets by introducing a
definition that captures the cross correlation within subsets
and between a subset and the rest of the system. We call this
function Fsubset�q ,�t�, which we discuss in detail in Appen-
dix B.

We show the values of RSE and RSED in Figs. 1�a� and 1�b�
for the cases when only the fastest and slowest subsets of
molecules are considered. Like the total system average,
both the SE and SED ratios for the subsets deviate at low T
from the corresponding constant values reached at high tem-
perature. Therefore, we observe that the breakdowns of both
the SE and SED relations occur not only in the subset of the
fastest molecules, but also in the slowest. We have also con-
firmed a breakdown in intermediate subsets.

The most mobile subset of molecules has a consistently
greater value of Dt� /T and Dr� /T than the rest of the system,
while the ratios for the least mobile subsets are always
smaller. This is a result of the fact that the means by which
we select the different subsets most strongly affects the dif-
fusion constant �see Appendix B�, and hence the differences
in the SE and SED ratios between the full system and the
subsets are dominated by the diffusion constant, rather than
by the relaxation time.

In order to compare the relative deviations of these curves
from the SE and SED predictions, we normalize RSE and
RSED by their respective high-temperature values �Figs. 1�c�

and 1�d��. We observe that there is a collapse of all the
curves; thus, we conclude that both the most and least mobile
molecules contribute in the same fashion to the breakdown
of the SE and SED relationships. Moreover, this result sup-
ports the scenario that the deviation from the SE and SED
relations cannot be attributed to only one particular subset of
fastest or slowest molecules, but to all scales of translational
and rotational mobility �22�. We have confirmed this by
looking at subsets of intermediate mobility �not shown�.
Therefore, we interpret our results as a sign of a “generalized
breakdown” in the system under study, in contrast to a pic-
ture where only the most mobile molecules are the origin of
the breakdown of SE and SED relations, embedded in an
inactive background where the SE and SED equations hold
�see, e.g., �7��. These results are consistent with the results of
Ref. �22�, whose authors arrived at the same conclusion via a
different analysis.

C. Fractional Stokes-Einstein and Stokes-Einstein-Debye
relations

When the SE and SED relations fail, it is frequently ob-
served that they can be replaced by fractional functional
forms �4,6,33,84–89�

Dt � � �

T
�−�t

, Dr � � �

T
�−�r

�11�

with �t�1 and �r�1. Hence we test to what degree Eqs.
�11� hold for our system. In Fig. 2 we show a parametric plot
of diffusivity versus � /T for the entire system, and for the
fastest and slowest molecules composing the TH and RH.
The results at low temperature are well fitted with the frac-
tional form of SE and SED relations. From Fig. 2, �t for TH
is 0.83, 0.84, and 0.84 for fastest, slowest, and all, respec-
tively, so all TH have approximately the same exponent.
Similarly, for RH we find that �r is 0.75, 0.76, and 0.75 for
fastest, slowest, and all, respectively.

Reference �22� found a stronger form of this fractional
relation. Specifically, Ref. �22� examined an “ensemble” of
systems of the ST2 water model �90� at the same T, which by
statistical variation have fluctuations in the SE and SED ra-
tios. Nonetheless, all systems collapsed to the same master
curve when plotted in the parametric form shown in Fig. 2,
meaning that the systems dominated by mobile or immobile
molecules collapse to the same curve. While Ref. �22� em-
ployed a very different method �small systems followed for
shorter times�, the conclusion of our Fig. 2 is the same: a
generalized deviation from the SE and SED relations. How-
ever, Fig. 2 clearly shows that we do not find a general
collapse in our present calculation. To understand why, we
return to the fact that the method by which we define mobil-
ity affects much more strongly the diffusion constants than
the coherent relaxation time �. As a result, it is impossible to
have the results for the mobile and immobile subsets to col-
lapse to a single master curve. To observe the same collapse,
presumably one needs a more “neutral” method for selecting
the mobile particles—that is, one that does not explicitly bias
toward a specific property. Unfortunately, such an approach
is not obvious. However, we reproduced the ensemble ap-
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proach of Ref. �22�, by splitting each of our five simulations
into three trajectories. We obtain reasonable fluctuations that
allow us to test and confirm �not shown� the observation of
collapse of Ref. �22�. Hence, the phenomenon of homoge-
neous breakdown of the SE and SED relations appears to be
robust for the different water models.

V. DECOUPLING OF TRANSLATIONAL AND
ROTATIONAL MOTIONS

The SE and SED relations also imply a coupling between
rotational and translational motion. Specifically, Eqs. �1� and
�2� imply that the ratio

Dr

Dt
=

3

4R2 �12�

should remain constant as a function of temperature. Since
we have already seen that the SE and SED ratios are not
obeyed, it is likely that the ratio Dr /Dt is also violated �91�.
However, it is also possible that Dr /Dt remains constant if
both Dr and Dt deviate from their expected behavior in the
same way.

Figure 3�a� shows Dr /Dt as a function of temperature. As
T decreases, we observe that Dr /Dt increases, which implies
that the breakdown of the SED relation is more pronounced
than that of the SE relation.

Experiments generally do not examine the behavior of
Dr /Dt since Dr is not accessible. Instead, Dr is usually re-
placed by ����−1 with �=2 �19�. Here, �� is the relaxation
time of the rotational correlation function

C���t� � �P��cos�p̂�t� · p̂�t + �t��
	 , �13�

where P��x� is the Legendre polynomial of order �, and p̂�t�
is defined in Appendix A. Figure 3�b� shows ����−1 /Dt for
�=1,2. We observe that ����−1 /Dt also shows a decoupling
between rotational and translational motion. However, while
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Dr /Dt increases upon cooling, ����−1 /Dt decreases upon
cooling. MD simulations using an ortho-terphenyl �OTP�
model �92� and the ST2 water model �22� also find a quali-
tatively similar temperature dependence of decoupling of the
SE and SED relations depending on whether Dr or �2 is used.
In the simulations of OTP, it was shown that Dr /Dt starts to
increase upon cooling at the same temperature at which cag-
ing in rotational motion becomes relevant; this caging results
in intermittent large rotations that are not accounted for by
the Debye approximation.

Similar to the analysis of the breakdown of the SE and
SED ratios, we can test whether DHs play a strong role in the
decoupling by examining the ratio Dr /Dt for the different
mobility subsets. This is slightly complicated by the fact that
we can choose mixed mobility subsets when calculating the
ratio. Figure 4 shows that the ratios Dr /Dt for all choices of
mobility subsets approximately coincide when scaled by the
high-temperature behavior of Dr /Dt. This indicates that �like
the breakdown of the SE and SED relations� the decoupling
is uniform across the subsets of mobility.

VI. TIME SCALES FOR BREAKDOWN AND DECOUPLING

A. Time-dependent Stokes-Einstein and Stokes-Einstein-
Debye relations

The SE and SED relations depend on D and �, which are
defined only in the asymptotic limit of infinite time. In con-
trast, the time scale on which DH exist is finite, and gener-
ally shorter than the time scale on which the system becomes
diffusive. As a result, making the connection between DH
and the breakdown of SE and SED expressions is difficult.
To address this complication, we incorporate a time depen-
dence in the SE and SED relations, so that we can evaluate

these relations at the time scale of the DH. This point has
been neglected so far in the literature. To define time-
dependent versions of the SE and SED ratios, we first define
time-dependent diffusivities

Dt��t� �
�r2��t�	

6�t
, Dr��t� �

�
2��t�	
4�t

, �14�

and we also define time-dependent relaxation times

���t� � �
t

t+�t

F�q,t��dt�. �15�

Note that Dt��t�→Dt and Dr��t�→Dr in the limit �t→�.
The definition of ���t� requires some explanation: ���t� is
the time integral of the intermediate scattering function, and
���t� will be proportional to the standard relaxation time �
�Eq. �8�� in the limit �t→�. There is a constant of propor-
tionality resulting from the stretched exponential form �93�.
When, instead, DH are considered, Fsubset�q ,�t� �see Eq.
�B2�� is used in the computation of ���t�. We choose these
definitions since, in the limit �t→�, they converge or are
proportional to the corresponding time-independent defini-
tions. We will use these time-dependent quantities to exam-
ine time-dependent generalizations of RSE �Eq. �3�� and RSED
�Eq. �4��.

B. Breakdown time scale

Analyzing the time-dependent ratio D��t����t� /T �for ei-
ther rotational or translational motion� allows one to verify
quantitatively the role of the time scale in the SE and SED
ratios. To contrast the behavior of D��t����t� /T with the
average over the entire system, we define the time-dependent
“breakdown” ratios as follows:

bTH��t� �
�D��t����t�/T�TH

�D��t����t�/T�all
�16�

and similarly

bRH��t� �
�D��t����t�/T�RH

�D��t����t�/T�all
. �17�

If the DH are related to the breakdown of the SE and SED
relations, then one would expect the following �i� The bTH
and bRH ratios will show the largest deviations from the sys-
tem average behavior at the time scale when DH are most
pronounced, i.e., approximately at a time that we denote as
t*, at which the non-Gaussian parameter is a maximum �see
Appendix C�. �ii� The lower T, the larger is the peak of bDH
�in agreement with the fact that the DH are more pronounced
as T decreases�. Figure 5�a� for TH and Fig. 5�b� for RH
show the behavior of bDH��t� for the fastest subset of mol-
ecules, for different temperatures. Both expectations �i� and
�ii� agree with Fig. 5.

From Fig. 5 we can extract the time tb when bDH��t� is a
maximum. Figure 6�a� shows tb for each of the four subsets:
TH fastest and slowest and RH fastest and slowest. If DH
play a significant role in the breakdown of the SE and SED
relations, we would expect that the maximum contribution to
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FIG. 4. �Color online� Ratio of rotational and translational dif-
fusivities, Dr and Dt respectively, for the following choices of sub-
sets: Dr for fastest translational heterogeneities �TH� divided by Dt

for fastest TH ���, Dr for slowest TH divided by Dt for slowest TH
���, Dr for fastest rotational heterogeneities �RH� divided by Dt for
fastest RH ���, Dr for slowest RH divided by Dt for slowest RH
���. The values were normalized by the T=350 K values for every
curve. The fact that for these four cases Dr /Dt deviates from unity
�dashed line� to approximately the same degree indicates that the
decoupling occurs across all four cases.
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the deviation from the SE and SED relations, occurring at tb,
coincides roughly with the “classical” measure of the char-
acteristic time of DH, t*. Comparison of Figs. 6�a� and 6�b�
for T�280 K shows that t* is slightly larger than tb for the
slowest DH, while is shorter than tb for fastest DH. None-
theless, tb and t* are approximately the same, and so the
largest contribution to the SE and SED ratios is on the time
scale when DH are most pronounced. This provides direct
evidence for the idea that the appearance of DH is accompa-
nied by the failure of the SE and SED ratios.

C. Decoupling time scales

We next directly probe the relation between DH and the
decoupling of Dr and Dt. As discussed above, the time scale
at which the DH are observable is much smaller than the
time scale at which the system is considered diffusive.
Therefore, in analogy to the previous section, we incorporate
a time scale in the Dr /Dt ratio so that we can compare the
decoupling between rotation and translation at the time scale
of the DH. To this end we introduce the ratios

dTH��t� �
�Dr��t�/Dt��t��TH

�Dr��t�/Dt��t��all
, �18�

and similarly

dRH��t� �
�Dr��t�/Dt��t��RH

�Dr��t�/Dt��t��all
. �19�

Figure 7�a� shows the results for dTH��t� for the fastest sub-
sets of molecules. For short times, dTH��t� does not depend
on time and temperature, since in this initial temporal regime
the dynamics at all temperatures is ballistic, i.e., both
�
2��t�	 and �r2��t�	 are approximately linear with ��t�2. At
intermediate times dTH��t� develops a distinct maximum
which increases in magnitude and shifts to larger observation
times as T is reduced. The maximum occurs at the time scale
where the fastest molecules of the TH and RH “break their
cages” and enter the corresponding diffusive regimes �see
Fig. 6�b��. Therefore, the results of Fig. 7�a� also suggest that
the decoupling between rotational and translational motion is
largest at approximately the same time scale at which the DH
are most pronounced. We note from Fig. 7�a� that dTH��t�
�1, indicating that the decoupling of rotational and transla-
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FIG. 5. �Color online� �a� Time-dependent extension bTH��t� of
the Stokes-Einstein relation for the fastest translational heterogene-
ities �TH� at different T. For the sake of clarity the curve corre-
sponding to T=290 K was removed. �b� Time-dependent extension
bRH��t� of the Stokes-Einstein-Debye relation for the fastest rota-
tional heterogeneities �RH� at different T. For the sake of clarity the
curve corresponding to T=290 K was removed. In both �a� and �b�,
the maxima occur at the time scales corresponding to the end of the
cage regime, when DH are more pronounced. These maxima in-
crease upon cooling, as the DH become more pronounced.
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FIG. 6. �Color online� Temperature dependence of �a� tb, the
time at which the time-dependent extensions of the Stokes-Einstein
and Stokes-Einstein-Debye relations, bTH and bRH, respectively,
have maxima, and �b� t*, the time at which the non-Gaussian pa-
rameter �2��t� reaches a maximum. t* indicates the time scale cor-
responding to the end of the cage regime. We show the results when
considering molecules belonging to translational heterogeneities,
rotational heterogeneities, and also for the entire system.
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tional motion observed in the fastest subsets of TH is smaller
than that from the average over the entire system. As we
focus in slower subsets of TH for the same T, we observe
that the maximum in dTH��t� decreases at any given T.

Figure 7�b� shows dRH��t� for the fastest subsets of mol-
ecules. Similarly to the behavior of dTH��t�, at short times
dRH��t� does not depend on time or temperature; molecules
move ballistically in this regime. The maxima in dRH��t� at
�t�0.1 ps for all temperatures are a consequence of the
librational molecular motion, enhanced in this case because
we are selecting the fastest subset of RH. At intermediate
times, we observe a broad minimum in dRH��t� centered at
�t� t*; this minimum becomes deeper and shifts to later
times upon cooling, suggesting that the decoupling in the
fastest subset of RH is largest at approximately the same
time scale at which the DH are more pronounced. The fact
that dTH��t� shows a maximum at approximately t*, while
dRH��t� shows a minimum at t* is because the fastest subsets
of RH tend to enhance the rotational motion with respect to
the translational motion, while the opposite situation occurs

for the fastest subsets of TH. We note from Fig. 7�b� that
dRH��t��1, indicating that the decoupling of rotational and
translational motion observed in the fastest subsets of RH is
larger than that found in the average over the entire system.

In short, the behavior of dTH��t� and dRH��t� indicates
that the emergence of DH is correlated to the rotation and
translation decoupling, just as it does for the breakdown of
the SE and SED relations.

VII. SUMMARY

In this work, we tested in the SPC/E model for water �i�
the validity of the SE and SED equations, �ii� the decoupling
of rotational and translational motion, and �iii� the relation of
�i� and �ii� to DH. We found that at low temperatures there is
a breakdown of both the SE and SED relations and that these
relations can be replaced by fractional functional forms. The
SE breakdown is observed in every scale of translational
mobility. Similarly, the SED breakdown is observed in every
scale of rotational mobility. Many believe that the origin of
the breakdown of the SE and SED relations can be attributed
to the most mobile molecules embedded in an inactive back-
ground where these relations hold. Instead our results sup-
port the view of a generalized breakdown.

We also found that, upon cooling, there is a decoupling of
translational and rotational motion. This decoupling is also
observed in all scales of rotational and translational mobili-
ties. In agreement with MD simulations of an OTP model
�92�, we find that an opposite decoupling is observed de-
pending on whether one uses the rotational diffusivity Dr or
the rotational relaxation time �2. In the first case, rotational
motion is enhanced upon cooling with respect to the transla-
tional motion, while the opposite situation holds when
choosing �2. This is particularly relevant for experiments,
where typically only �2 is accessible.

We also found that as the decoupling of Dr /Dt increases,
the number of molecules belonging simultaneously to both
RH and TH also increases. This is counterintuitive since a
stronger decoupling would suggest less overlapping of TH
and RH. Therefore we conclude that the decoupling of Dr /Dt
is significant even at the single-molecule level.

We also explored the role of time scales in the breakdown
of the SE and SED relations and decoupling. To do this we
introduced time-dependent versions of the SE and SED ex-
pressions. Our results suggest that both the decoupling and
SE and SED breakdowns are originated at a time scale cor-
responding to the end of the cage regime, when diffusion
starts. This is also the time scale at which the DH are more
relevant.

Our work also demonstrates that selecting DH on the ba-
sis of translational or rotational displacement more strongly
biases the calculation of diffusion constants than the other
dynamical properties. If appropriate care is taken, this should
not be problematic, but it does make apparent that an alter-
native approach to identify DH would be valuable. This is
especially true when contrasting the behavior of diffusion
constants and relaxation times, as is the case for the SE and
SED relations.
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FIG. 7. �Color online� �a� Temporal behavior of the ratio of the
time-dependent rotational diffusivity and translational diffusivity
for the fastest translational heterogeneities �TH�, normalized by the
average over the entire system. We show all the simulated tempera-
tures. �b� Temporal behavior of the ratio of the time-dependent ro-
tational diffusivity and translational diffusivity for the fastest rota-
tional heterogeneities �RH�, normalized by the average over the
entire system. We show all the simulated temperatures. The figure
shows that the decoupling of rotation from translation is increas-
ingly more pronounced as T decreases and is a maximum �a� or
minimum �b� on the time scale of the DH.
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APPENDIX A: EVALUATION OF THE ROTATIONAL
MEAN SQUARE DISPLACEMENT

To calculate Dr �Eq. �7�� we consider the behavior of the
normalized polarization vector p̂i�t� for molecule i �defined
as the normalized vector from the center of mass of the water
molecule to the midpoint of the line joining the two hydro-
gens�. The molecular rotation will cause a rotation of p̂i�t�. A
naive definition of angular displacement as p̂i�t�− p̂i�0�
would be insensitive to full molecular rotations, since it
would result in a bounded quantity. Following Ref. �71�, we
avoid this complication by defining the vector rotational dis-
placement in the time interval �t , t+�t� as


� i��t� � �
t

t+�t

�
� i�t��dt�, �A1�

where �
� i�t�� is a vector with direction given by p̂i�t��
� p̂i�t�+dt�� and with magnitude given by ��
� i�t���
�cos−1�p̂i�t�� · p̂i�t�+dt���, i.e., the angle spanned by p̂i in the
time interval �t� , t�+dt��. Thus, the vector 
� i��t� allows us to
define a trajectory in a three-dimensional space representing
the rotational motion of molecule i, analogous to the trajec-
tory defined by r�i��t� for the translational case. We define, in
analogy to the MSD, a rotational mean square displacement
�RMSD� �18,71,74�

�
2��t�	 �
1

N


i=0

N

�
� i�t + �t� − 
� i�t��2. �A2�

Using this form, we define Dr as given by Eq. �7�, analogous
to the definition of Dt. We have verified that there is no
qualitative difference in the results of the present work, when
the polarization vector is replaced by the other two principal
directions of the water molecule.

APPENDIX B: CORRELATION FUNCTIONS FOR
DYNAMICAL HETEROGENEITIES

We introduce a MSD �r2��t�	 for the fastest and slowest
subsets of molecules by limiting the sum in Eq. �6� to the
molecules in the corresponding subset at time �t. The differ-
ent MSDs at T=210 K are shown in Fig. 8�a�. We note that,
since the most and least mobile 7% of the molecules will
generally vary as a function of time, the molecules used to
calculate �r2��t�	 will change with time; in other words,
when a molecule ceases being part of a DH, it is no longer
considered in the computation of the MSD and the focus is
shifted to the new subset of molecules belonging to the DH
considered. Analyzing the �r2��t�	 for the collection of sub-
sets from most mobile to least mobile has the advantage that
the mean of �r2��t�	 over the subsets converges to the MSD
for the full system. In a similar fashion the RMSD �
2��t�	
is calculated also for the fastest and slowest rotationally mo-
bile molecules �Fig. 8�b��.

To complement the single-particle dynamics determined
by �r2��t�	 and �
2��t�	, we also evaluate the coherent in-
termediate scattering function
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FIG. 8. �Color online� Example of time correlation functions limited to subsets of DH. �a� Mean square displacement �MSD� and �b�
rotational mean square displacement �RMSD� at T=210 K for the fastest and slowest translational heterogeneities �TH� and rotational
heterogeneities �RH�, respectively, as well as for the entire system. Intermediate scattering function F�q ,�t� at T=210 K for �c� the fastest
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F�q,�t� �
1

NS�q�
j=1

N

e−iqrj�t+�t�

k=1

N

eiqrk�t�, �B1�

where S�q� is the structure factor. F�q ,�t� reflects two-
particle temporal correlations instead of single-particle cor-
relations �as in the case of the MSD�. The normalization
factors ensure that F�q ,0�=1. In analogy to our analysis of
�r2��t�	, we would like to evaluate the contribution to
F�q ,�t� made by subsets of molecules. Naively, one might
think this can be simply done by limiting the sums in Eq.
�B1� to solely those molecules within the subset. However,
taking the mean over the subsets of such a quantity will not
recover the complete F�q ,�t�, since there will be no infor-
mation on the cross correlations between the subsets. In or-
der to include these correlations and define a function that,
when averaged over subsets, will return F�q ,�t� �as is the
case for the MSD and RMSD�, we simply limit one of the
two sums to the subset, while the other sum still extends over
all molecules. Mathematically, we define

Fsubset�q,�t� �
1

NsubsetS�q�
j=1

N

e−iqrj�t+�t� 

k�subset

eiqrk�t�.

�B2�

Note that one must make the choice whether to limit the sum
to the subset at time t or t+�t; we have found that in practice
there is little, if any, qualitative difference in this choice.
Thus we measure the correlations between the subset of mol-
ecules at time t with all molecules at time t+�t. Addition-
ally, Fsubset�q ,0� is not necessarily 1; forcing this normaliza-
tion would not satisfy the desired condition that the mean
over subsets returns the average over all molecules. In all
cases, we evaluate Fsubset�q ,�t� at q=18 nm−1, the value of
the transferred momentum at the first maximum of the struc-
ture factor where the relaxation is slowest �except for the q
→0 limit�. Figures 8�c� and 8�d� show F�q ,�t� for all mol-
ecules, and for the fastest and the slowest TH and RH.

At this point, it is important to compare the behavior of
�r2��t�	 and �
2��t�	 with that of F�q ,�t� for the TH and
RH subsets. Since we define mobility on the basis of dis-
placement, the behavior of �r2��t�	 and �
2��t�	 for the sub-
sets are much more strongly affected than Fsubset�q ,�t� for
the subsets. Additionally, Fsubset�q ,�t� includes cross corre-
lations both within and between subsets that a single-particle
definition of mobility does not include. More specifically, the
results in Fig. 8 at T=210 K show that there is roughly two
orders of magnitude difference between �r2��t�	 for the most
and least mobile molecules �and similar difference for
�
2��t�	�. We also find that there is roughly also two orders
of magnitude difference between the most and least mobile
molecules for Dt and Dr. For higher T, the difference is less
pronounced. When we examine the relaxation of F�q ,�t� for
the most and least mobile subsets, we find only a difference
of a factor of �2 between the time scales for relaxation.
Therefore—not surprisingly—selecting mobility based on
single-particle displacement results in a much stronger effect

on diffusion than it does for collective relaxation phenom-
ena. This fact is important for the comparison between this
work and a previous work �22�.

APPENDIX C: CHARACTERISTIC TIME OF DYNAMICAL
HETEROGENEITIES

Since we analyze the DH in the context of both transla-
tional and rotational motions, it is natural to ask at what time
scale the TH and RH are more pronounced and to what de-
gree the TH and RH subsets overlap each other. References
�63,74� show that the fastest subsets of TH and RH form
clusters, and that these clusters are larger at approximately
the time t* corresponding to the onset of the diffusive re-
gime, as indicated by �r2��t�	 and �
2��t�	, respectively.
Normally t* for the translational case is defined as the maxi-
mum in the non-Gaussian parameter �94�

�2��t� �
3�r4��t�	
5�r2��t�	

− 1, �C1�

where �r4��t�	 and �r2��t�	 are the fourth and second mo-
ments of the displacement distribution, respectively �the lat-
ter is also the MSD�. �2��t� is known to be identically zero
for a Gaussian distribution, and thus it signals when the dy-
namics does not generate such a Gaussian distribution of
displacements. In the present study, we use either transla-
tional, r�i��t�, or rotational, 
� i��t�, displacement for TH and
RH, respectively, when computing �2��t�. Figure 6�b� shows
t* as a function of T defined for the fastest and slowest sub-
sets of both the TH and RH. We also include the correspond-
ing values of t* for the entire system. Figure 6�b� shows that
there is no qualitative difference in shape of the curve of
t*�T� for the different subsets considered and the entire sys-
tem.

Since the values of t* for TH and RH are similar, we
expect that there is some coupling between TH and RH.
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FIG. 9. �Color online� Fraction of molecules belonging simulta-
neously to both fastest translational heterogeneities �TH� and fastest
rotational heterogeneities �RH� versus observation time �t, at dif-
ferent temperatures. This overlap of fastest TH and fastest RH is
maximum at the end of the cage regime and increases upon cooling.
It is almost 45% at the lowest T.
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Previously, Chen et al. �95� found that at large momentum
transfer q, there is coupling between translational and rota-
tional motion. The maximum correlation occurs at the cage
relaxation time t* for large values of q. Reference �74� found
a spatial correlation between RH and TH. Along similar
lines, we examine the overlap between these subsets. Figure
9 shows the overlap between the fastest subset of molecules
belonging to TH and RH, as a function of �t and T. Specifi-
cally, we count the number of fastest molecules belonging
simultaneously to TH and RH as a function of observation

time �t. Similar to Fig. 9 in Ref. �95�, the strength of this
coupling reaches its maximum at the cage relaxation times,
but these times are consistently shorter than those reported in
�95�; this is likely to be due to the fact that we consider
fastest TH and fastest RH in this calculation, while Ref. �95�
considers all the molecules of the system. Figure 9 indicates
that, at the lowest temperature simulated, about 45% of the
molecules comprising the fastest subset of TH coincide with
the ones in the fastest subset of RH.
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